Using Topic Models in Content-Based News Recommender Systems
نویسندگان
چکیده
We study content-based recommendation of Finnish news in a system with a very small group of users. We compare three standard methods, Naïve Bayes (NB), K-Nearest Neighbor (kNN) Regression and Regulairized Linear Regression in a novel online simulation setting and in a coldstart simulation. We also apply Latent Dirichlet Allocation (LDA) on the large corpus of news and compare the learned features to those found by Singular Value Decomposition (SVD). Our results indicate that Naïve Bayes is the worst of the three models. K-Nearest Neighbor performs consistently well across input features. Regularized Linear Regression performs generally worse than kNN, but reaches similar performance as kNN with some features. Regularized Linear Regression gains statistically significant improvements over the word-features with LDA both on the full data set and in the cold-start simulation. In the cold-start simulation we find that LDA gives statistically significant improvements for all the methods.
منابع مشابه
A New WordNet Enriched Content-Collaborative Recommender System
The recommender systems are models that are to predict the potential interests of users among a number of items. These systems are widespread and they have many applications in real-world. These systems are generally based on one of two structural types: collaborative filtering and content filtering. There are some systems which are based on both of them. These systems are named hybrid recommen...
متن کاملA Review of Spatial Factor Modeling Techniques in Recommending Point of Interest Using Location-based Social Network Information
The rapid growth of mobile phone technology and its combination with various technologies like GPS has added location context to social networks and has led to the formation of location-based social networks. In social networking sites, recommender systems are used to recommend points of interest (POIs) to users. Traditional recommender systems, such as film and book recommendations, have a lon...
متن کاملDesign a Hybrid Recommender System Solving Cold-start Problem Using Clustering and Chaotic PSO Algorithm
One of the main challenges of increasing information in the new era, is to find information of interest in the mass of data. This important matter has been considered in the design of many sites that interact with users. Recommender systems have been considered to resolve this issue and have tried to help users to achieve their desired information; however, they face limitations. One of the mos...
متن کاملContext-Aware Recommender Systems: A Review of the Structure Research
Recommender systems are a branch of retrieval systems and information matching, which through identifying the interests and requires of the user, help the users achieve the desired information or service through a massive selection of choices. In recent years, the recommender systems apply describing information in the terms of the user, such as location, time, and task, in order to produce re...
متن کاملContent-Based Collaborative Filtering for News Topic Recommendation
News recommendation has become a big attraction with which major Web search portals retain their users. Two effective approaches are Content-based Filtering and Collaborative Filtering, each serving a specific recommendation scenario. The Content-based Filtering approaches inspect rich contexts of the recommended items, while the Collaborative Filtering approaches predict the interests of long-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013